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ABSTRACT
We prove that a Miintz system has Chebyshev polynomials on [0, 1] with
uniformly bounded coefficients if and only if it is lacunary. A sharp
Bernstein-type inequality for lacunary Miintz systems is established as
well. As an application we show that a lacunary Miintz system fails to
be dense in C(A) in the uniform norm for every A C [0,1] with pesitive
outer Lebesgue measure. A bounded Remez-type inequality is conjectured
for non-dense Miintz systems on [0, 1] which would solve Newman'’s prob-

lem concerning the density of products of Miintz systems.

1. Introduction and Notations

Denseness and approximation questions in Markov systems are intimately and
essentially tied to the behavior of the associated Chebyshev polynomials; see, for
example, [1,2]. Our intention, in this paper, is to show that lacunary Miintz sys-
tems are completely characterized by the property that their associated Cheby-
shev polynomials on [0, 1] have uniformly bounded coefficients. This is the con-
tent of Theorems 2.1 and 2.2. This allows us to give an (essentially) sharp
Bernstein-type inequality (Theorem 3.1) for these systems, and from this we can

rederive a version of a Miintz-type theorem in [2] (Theorem 4.1). This theorem
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tells us that, under the assumption of lacunarity, a Miintz system fails to be
dense in C(A), where A C [0,00) is any set with positive Lebesgue outer mea-
sure. We conjecture that this extension of the Miintz-Szasz theorem holds in
any non-dense Miintz system. In Section 5 a bounded Remez-type inequality is
conjectured for non-dense Miintz systems on [0, 1] which would solve Newman's
problem concerning the density of products of Miintz systems.

Let A = {X\i}2, 0 < Ao < A1 < ---. The set of all Miintz polynomials of the
form p(z) = Ljea;z* with real coeflicients a; will be denoted by Ha(A). Let
H(A) = U Ha(A). The n-th Chebyshev polynomial T, of H(A) on [0,1] is
defined by the properties

(1) Tu € Ha(A),

(2) Ty equioscillates n + 1 times on {0, 1],

(3) maxoce<1 |Ta(z)| = 1,

(4) Ta(1) = 1.

To be precise, property (2) means that T,(z) achieves the values

iorélf%cl |Ta(z)| = £1

n + 1 times on [0,1] with alternating signs. It is well-known that such a T,
(n =0,1,...) exists and it is unique.

2. Chebyshev Polynomials of H(A) on [0,1] with Uniformly Bounded
Coefficients

Let
Tu(z) = Zaj,,.z’\"
J=0

be the n-th Chebyshev polynomial of H(A) on [0,1]. We characterize the Miintz
systems H(A) for which |aj .| < K(A) for every j = 0,1,...,n; n = 0,1,..,
where K(A) is a constant depending only on A.

THEOREM 2.1: There is a constant ¢;(A) depending only on A such that |aj .| <
c1(A) for every j = 0,1,...,n; n = 0,1,... if and only if there is a constant
¢2(A) > 1 depending only on A such that Aiy1/XAi 2> c2(A) for every i = 1,2,....

In fact, in one of the directions we will prove more. Namely we have
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THEOREM 2.2: If Aiy1/Ai > c2(A) > 1 for every i = 1,2,... with some constant

c2(A) depending only on A, then there is a constant ¢;(A) depending only on A
such that

|bjnl < c1(A) 2ex, lp(z)] (G =01,...,mn=0,1,...)

for every

p(z) = zn:b-,nz’\’ € H.(A).

=0
3. A Bernstein-type Inequality for Lacunary Miintz Systems
The following pretty inequalities were proved by D. Newman [9]. We have

(3.1) —ZA< sup ”MN—(I)TSHZ’\

= pEH, (A) maXo<z<1 |p pourd

In the case that E:ﬁlz\‘-_l <00, A =0, >1andinf {A\iy1 —Ai:1 €N} >0,
Lemma 2 of [1] gives

(3.2) Jzax p'(2)] < (A, y) max (o)l
for every p € H(A) and 0 < y < 1, where ¢(A, y) is a constant depending only on
A and y. In our next theorem we prove that if A is lacunary, Ao =0 and \; > 1,

then in (3.2) ¢(A,y) can be replaced by c3(A)/(1 — y), where c3(A) is a constant
depending only on A.

THEOREM 3.1: If Ao =0, A; > 1 and Aif1/Ai 2 c2(A) > 1 foreveryi=1,2,...
with some constant c2(A) depending only on A, then there is a constant c3(A)
depending only on A such that

PO < 2 may 5(2)

foreveryp€e H(A) and 0 <y < 1.
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4. A Mintz-type Theorem for Lacunary Miintz Systems on Every A C
[0,1] with Positive Outer Lebesgue Measure

A beautiful theorem of Miintz of Szdsz [3, 7] states that a Miintz system H(A)
with A = 0 and A; / oo is dense in C([0,1]) in the uniform norm if and only
if £2,27! = 0o0. In 1943 Clarkson and Erdds [4] showed that if inf{Ai41 — A :
i € N} > 0, then for an arbitrary [a,b] C (0,00) a Miintz system H(A) with
Ai /* o is dense in C([a,b]) in the uniform norm if and only if £2,A;! = co.
The following conjecture seems to be hard.

CONJECTURE 4.1: Suppose that A C [0,1] is a closed set with positive Lebesgue
measure. Then a Miintz system H(A) with Ay = 0 and \; /" o0 is dense in C(A)

in the uniform norm if and only if ZE A7! = oo.
We prove an application of Theorem 3.1 for lacunary Miintz systems.

THEOREM 4.2: If \g = 0 and Aiz1/Ai 2 c2(A) > 1 for every i = 1,2,... with
some constant c3(A) depending only on A, then H(A) fails to be dense in C(A)
in the uniform norm for any A C [0,1] with positive Lebesgue outer measure.

5. Remez-type Inequalities for Miintz Systems

In [2] we pointed out that Conjecture 4.1 would trivially follow from the following
Remez-type inequality.

CONJECTURE 5.1: Let £%2,A7! < co. For every 0 < s < 1 there is a constant
¢(s,A) depending only on s and A such that |p(0)| < c(s,A) for every p € H(A)
with m({z € [0,1] : |p(z)] < 1}) > s, where m(-) denotes the Lebesgue measure.

By the already mentioned Miintz-Szdsz theorem, such a bounded Remez-type
inequality cannot hold when £, A7 = co. A discussion of Remez-type inequal-
ities for algebraic and trigonometric polynomials can be found in [5] and [6]. In
[2] we proved Conjecture 5.1 in the case when A; > A, j = 1,2,... with some
X > 1, and obtained Theorem 4.2 as a consequence of it. Our proof of Theorem
4.2 in Section 6 will be essentially shorter and it may open other ways to attack
Conjecture 4.1.

There was another motivation to establish Conjecture 5.1. It would solve

Newman'’s problem {10, P(10.5), p. 50] concerning the density of the classes

k
H*A) = {p= [I5i: pic HQ), j = 1,2,...,k}

i=1
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in C([0,1]) in the uniform norm, when \; = j2, j = 1,2,.... Namely, if Conjec-
ture 5.1 were true, then H*(A) would fail to be dense in C([0, 1]) in the uniform
norm for every k € N, whenever £2,A7" < oo. Indeed, Conjecture 5.1 implies
that

(5.1) m({z € (0,1 : |¢()] 2 @™ |g(0)]}) 2 1 - (2k)7*

for every ¢ € H(A) with a = ¢((2k)~1,A) + 1. Hence

N =

(5.2) m({z € [0,1]: p(z)| 2 a”*|p(0)[}) >

for every p € H¥(A) (if p = p1p2---px with p; € H(A), j = 1,2,...,k, then
Ip(z)] > a~¥|p(0)] holds for every = € [0,1] satisfying |p;j(z)] > a!|p;(0)] for
each j = 1,2,...,k). Now let f € C([0,1]) be such that f(z) =0if1/4<z <1,
and f(0) = 1. If there were a p € H¥(A) such that

(5-3) ax |p(z) - f(2)| < a7,

0< <l

then it would contradict (5.2). Similarly, Conjecture 5.1 would imply that if
2, A7! < 00, and A4 C [0,1] is of positive measure, then H¥(A) is not dense in
C(A) for every k € N.

6. Proofs
To prove Theorem 2.2 we need the following result of Hardy and Littlewood [8].
THEOREM A: Assume that v = 0, vit1/vi 2 n > 1 for every i = 1,2,...,

f(z) = E2,biz™ is convergent in {0,1) and lim,_.;.. f(z) = A exists. Then
A=X2.b;.

Proof of Theorem 2.2: Without loss of generality we may assume that Ag = 0.
Assume indirectly that there are

i

(6.1) Pi(z) = Z bjn, 2™
i=0

such that

(6.2) 0213%1 |Pr(z)} =1, k=12...
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and

. 4 -
(6.3) og}ghlb,nJZk, k=12,....

Choose a sequence {ai}5, of positive integers such that

(6.4) a3 =1 and agy1 > 2042, fork=12,....
Now let

= 1
(6.5) f&) =Y Pule™).

k=1

Note that the above sum converges uniformly on [0, 1] because of (6.2). Therefore
f is continuous on [0,1]. For the sake of brevity let

(6.6) No=0 and Ne=) m, k=12,....
i=1

Further let

=~ 1
(6.7) P=0, b=)Y 72 00.ms

k=1
and
(6.8) Yoy 45 = @A, J=12,...,np and k=1,2,...

Observe that the sum in (6.7) converges, since by (6.2) |bo,n,| = |P:(0)] < 1.
Also, from Aj41/Ai > c2(A) > 1, i = 1,2,..., and (6.4) we can deduce that
Yigr/1i 2 n>1,i=1,2,... with n = min{cz(A),2}. Let A’ = {;}{2,. Then by
(6.5) f € C([0,1]) can be approximated by Miintz polynomials from H(A') with

arbitrary accuracy. Hence by Theorem 3 of [4] f is of the form

(6.9) f(z) =) biz™,
i=0
where the sum converges in [0,1). Since f is continuous on {0,1], Theorem A

implies that

(6.10) Y bi=4
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exists. By Theorem 3 of [4] each b, (j = 1,2,...,n; k = 1,2,...) is equal
to one of the coefficients b; (i = 1,2,...). Since |by,n,| = |[Px(0)] < 1 for every
k=1,2,..., from (6.3) and (6.5) we deduce that for every k € N thereisani € N
such that |b;| > k2. This contradicts (6.10), thus the theorem is proved. ]

Proof of Theorem 2.1: We show that if iminf;_,o A;/Ai—1 = 1, then there is no
c1(A) such that |ajn| < ¢1(A) for every j =0,1,...,n; n=0,1,.... To see this,
for an arbitrary ¢ > 0 we select an n € N such that A,—1/A, > 1 —¢. Observe
that P,(z) = z*» — 2*»-1 achieves its maximum modulus on [0,1] at

r= /\n—l l/(An_xn—l)
An ’

An—1

A,‘_l n-Xas1 /\"-1 An—l
P, < - <1-—=
0< < | ,,(:t)l ( An ) (1 An ) s1 An <&

which shows that the leading coefficient of the n-th Chebyshev polynomial T;, of
H(A) on [0,1] is at least 1/e, otherwise

hence

! Tn - Pn € Hn-—l(A)

Gn,n

would have at least n zeros in (0, 1), a contradiction. |

Proof of Theorem 3.1: Let p = H(A) be of the form

(6.11)) p(z) =bon+ Y bjnz™
i=1

such that

(6.12) oI?ax [p(z)] < 1.

From Aiy1/Xi > e2(A) > 1 (¢ =1,2,...), Ay 2 1, Theorem 2.2 and (6.12), we
obtain

Ip'(v)l = Izb.v. AN < Zlb,nlz\,y""’

J=1
< cl(A)Z,\ YNl < cs(A)Zy =
J=1 y=0
which yields the theorem. |

(6.13) Ca(A)

To prove Theorem 4.1 we need two lemmas.
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LEMMA 6.1: If \g = 0 and \i41/Xi > c2(A) > 1 for every i = 1,2,..., then for
every 0 < y < 1 there is an integer k(y,A) > 0 depending only on y and A such
that the n-th Chebyshev polynomial T, of H(A) on {0,1] has at most k(y,A)
zeros in [0,y] (n =1,2,...).

The proof of Lemma 6.1 can be found in [1, Theorem 3].

LEMMA 6.2: Let Ag =0, A; > 1 and Aj41/Xi 2 c2(A) > 1 for every i =1,2,.. ..
Denote the extreme points of the n-th Chebyshev polynomial T;, of H(A) on [0, 1]
by1=yon > Yi,n > ... > Yn,n = 0. Then there is a constant ¢ = ca(A) >0
depending only on A such that

(6.14) Ta(z) >

(R

if yjn<z<yjn+ec(l-yjn), 1<j<n,jiseven
and

(615) Ta(@) S —3 if Yin 2 Syjm+ell=yin), 1S5 <n, jisodd

Proof of Lemma 6.2: The proof is a straightforward combination of the equioscil-
lation of the Chebyshev polynomials T},, the Mean Value Theorem and Theorem
3.1. 1

Proof of Theorem 4.2: Without loss of generality we may assume that A\; > 1;
the case A\; > 0 can be obtained from this by the scaling z — z!/*1, Denote the
Lebesgue outer measure of a set 4 C [0,1] by m(A). If m(4) >0and A C[0,1],
then by the Lebesgue Density Theorem there is an 0 < a € A such that the
left hand side density of A at a is 1. By the scaling + — z/a, without loss of

generality we may assume that a = 1, that is

(6.16) i =004
. Jim. = .

Hence, there is a 0 < y < 1 such that

m((1-z)NA)

z

(6.17) > max{l —¢/2,3/4} forevery0<z <y,

where ¢ = c4(A) > 0 is the same as in Lemma 6.2. By Lemma 6.1 there is an
integer k = k(y/2,A) > 0 such that for the extreme points 1 = yo,n > Y1,n >
-++> Ynn = 0 of the n-th Chebyshev polynomial T;, of H(A) on [0,1] we have

(6.18) Yyin>1—-9y/2 if 0<j<n—Fk
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Since m((1 — y,1 — y/2) N A) > 0 (see (6.17)), there are k + 3 distinct points
ay <ay<--<aptsin(l—y,1—y/2)N A. Now let g be a continuous function
on [0,1] (and hence on A) such that

(6.19) g(z)=0 if 1-y/2<z<1

and

6.20 g(a;) =2(-1Y foreveryj=1,2,...,k+3.
§)

Assume that there is a p € H(A) such that
- 1
(6.21) max |p(z) ~ g(2)| < ¢

We will show that p — T, € Hn(A) has at least n + 1 different zeros in (0,1), a
contradiction. Indeed, it follows from Lemma 6.2 and (6.17) that there are n — k
distinct points 2y, > 225 > -+ > Zn_k,n from A such that

(6.22) T(zjn)>3 if 1<j<n-—kandjiseven
and
(6.23) T(zjm)<—3 if 1<j<n-kandjisodd.

Now (6.19) - (6.23) and maxe<z<1 |Tn(z)] = 1 imply

(6.24) (p—To)zn) <0 if 1<j<n-—kandjiseven,
(6.25) (p—Ta)(2jn) >0 if 1<j<n—kandjisodd,
(6.26) (p—Tn)(a;) <0 if 1<j<k+3andjisodd,
and

(6.27) (p—To)(zja) >0 if 1<j<k+3andjiseven.

From (6.24) - (6.27) we can deduce that p — T, has at least k + 2 zeros in
(a1,ax+3) C(1 —y,1-y/2). Thus p—T, € Hy, has at least n + 1 different zeros
in (0,1), but p # T, since maxo<;<1 |p(z)| > 7/4 and maxo<:<1 |Tn(z)| = 1.
This is a contradiction which finishes the proof. i
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