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ABSTRACT 

We prove that a Miintz system has Chebyshev polynomials on [0, I] with 

uniformly bounded coefficients if and only if it is lacunary. A sharp 

Bernstein-type inequality for lacunary M~ntz systems is established as 

well. As an application we show that a lacunary Miintz system fails to 

be dense in C(A) in the uniform norm for every A C [0, I] with positive 

outer Lebesgue measure. A bounded Remez-type inequality is conjectured 

for non-dense M~intz systems on [0, I] which would solve Newman's prob- 

lem concerning the density of products of M/~ntz systems. 

1. In t roduc t ion  and Nota t ions  

Denseness and approximation questions in Markov systems are intimately and 

essentially tied to the behavior of the associated Chebyshev polynomials; see, for 

example, [1,2]. Our intention, in this paper, is to show that lacunary Miintz sys- 

tems axe completely characterized by the property that their associated Cheby- 

shev polynomials on [0, 1] have uniformly bounded coefficients. This is the con- 

tent of Theorems 2.1 and 2.2. This allows us to give an (essentially) sharp 

Bernstein-type inequality (Theorem 3.1) for these systems, and from this we can 

rederive a version of a Miintz-type theorem in [2] (Theorem 4.1). This theorem 
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tells us that, under the assumption of lacunarity, a Miintz system fails to be 

dense in C(A), where A C [0, oo) is any set with positive Lebesgue outer mea- 

sure. We conjecture that this extension of the Miintz-Sz£sz theorem holds in 

any non-dense Miintz system. In Section 5 a bounded Remez-type inequality is 

conjectured for non-dense Miintz systems on [0,1] which would solve Newman's 

problem concerning the density of products of Mfintz systems. 
• OO " .  Let A = {A,}i=0, 0 < A0 < A1 < "" The set of all Miintz polynomials of the 

form p(x) = .i=0ujxmn _ ._xj with real coefficients a I will be denoted by Hn(A). Let 

H(A) = U.°*__0 H,,(A). The n-th Chebyshev polynomial T.  of H(A) on [0,1] is 

defined by the properties 

(1) Tn E H.(A),  

(2) W. equioscinates n + 1 times on [0,1], 

(3) max0<z<l IT,,(z)l = 1, 

(4) T.(1) = 1. 

To be precise, property (2) means that Tn(x) achieves the values 

+ max IT,,(=)I = ± i  o<_z<1 

n + 1 times on [0, 1] with alternating signs. It is well-known that such a Tn 

(n = 0 ,1 , . . . )  exists and it is unique. 

2 Q  

Coefficients 

Let 

Chebyshev Polynomials of H(A) on [0,1] with Uniformly Bounded 

= a i , . x  xi 
j=O 

be the n-th Chebyshev polynomial of H(A) on [0,1]. We characterize the Miintz 

systems H(A) for which [ai,n[ _< K(A) for every j = 0 , 1 , . . . , n ;  n = 0 ,1 , . . . ,  

where K(A) is a constant depending only on A. 

THEOREM 2.1: There is a constant cl(A) depending only on A such that [ai,,[ _~ 

cl(A) for every j = 0 , 1 , . . . , n ;  n = 0 ,1 , . . .  i f  and only if there is a constant 

c2(A) > 1 depending only on A such that Ai+i/Ai >_ c2(A) for every i = 1,2, . . . .  

In fact, in one of the directions we will prove more. Namely we have 
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THEOREM 2.2: /fAi+l/Ai > c2(A) > 1 for every i = 1 ,2 , . . .  with some constant 

c2(A) depending only on A, then there is a constant cl(A) depending only on A 

such that 

Ib¢,.I < cl(A) max Ip(x)l (j=O, 1,. . . ,n;n=O, 1,...) 
- o<x_<l 

for every 
n 

p(x) = Ebj ,nxAi  E Hn(A). 
j=O 

3 .  A B e r n s t e i n - t y p e  I n e q u a l i t y  f o r  L a e u n a r y  Miin tz  S y s t e m s  

The following pretty inequalities were proved by D. Newman [9]. We have 

(3.1) 2 / ~  ° [p'(1)[ - Ai <_ sup < II Ai. 
3 peH,(A) max0<z<l [p(x)[ - '---- i f 0  

oo --1 In the case that ~i=lAi < oo, Ao = 0, A1 _> 1 and inf {Ai+l - Ai : i E N} > 0, 

Lemma 2 of [1] gives 

(3.2) max Ip(x)l max [p'(zl[ < c(A,v)o<=< 1 o < x < y  

for every p E H(A) and 0 < V < 1, where e(A, V) is a constant depending only on 

A and V. In our next theorem we prove that if A is lacunary, A0 = 0 and A1 > 1, 

then in (3.2) c(A, y) can be replaced by ca(A)/(1 - y), where ca(A) is a constant 

depending only on A. 

THEOREM 3 . 1 : I r A 0  =0, A1 > 1 and Ai+l/Ai >_ c2(A) > 1 for every i = 1 ,2 , . . .  

with some constant c2(A) depending only on A, then there is a constant ca(A) 

depending only on A such that 

Ip'(y)l < c3(A) m a x  Iv(x)l 
- 1 - V 0 < x < l  

for every p 6 H(A) and 0 < V < 1. 
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4. A Miintz-type Theorem for Lacunary Miintz Systems on Every A C 
[0,1] with Positive Outer Lehesgue Measure 

A beautiful theorem of Miintz of Sz~sz [3, 7] states that a Miintz system H(A) 

with A0 = 0 and Ai / oo is dense in C([0,1]) in the uniform norm if and only 

if E~IA~ -1 = co. In 1943 Clarkson and Erd6s [4] showed that if inf{Ai+l - Ai : 

i 6 1%1} > 0, then for an arbitrary [a, b] C (0, e~) a Miintz system H(A) with 

Ai / oo is dense in C([a, b]) in the uniform norm if and only if CO -1 ~ i = l A i  ~-- OO. 

The following conjecture seems to be hard. 

CONJECTURE 4.1: Suppose that A C [0,1] is a closed set with positive Lebesgue 

measure. Then a Mfintz system H(A) with A0 = 0 and Ai / oo is dense in C(A) 

in the uniform norm if  and only if  ~=IA~ 1 = oo. 

We prove an application of Theorem 3.1 for lacunary Miintz systems. 

THEOaEM 4.2: IfAo = 0 and ,~i+l/Ai > c 2 ( A )  > 1 for every i = 1 ,2 , . . .  with 

some constant c2(A) depending only on A, then H(A) fails to be dense in C(A) 

in the uniform norm for any A C [0,1] with positive Lebesgue outer measure. 

5. Remez-type Inequalities for Miin tz  S y s t e m s  

In [2] we pointed out that Conjecture 4.1 would trivially follow from the following 

Remez-type inequality. 

CO --1 CONJECTURE 5.1: Let ~i=lAi < oo. For every 0 < s < 1 there is a constant 

c(s,A) depending only on s and A such that Ip(0)l _< c(s ,h)  for every p ~ H(A) 

with m [0,1]: Ip( )l -< 1}) >_ s, where m(.) denotes the Lebesgue me o_ . 

By the already mentioned Miintz-SzAsz theorem, such a bounded Remez-type 
CO --I inequality cannot hold when El= 1A i = vo. A discussion of Remez-type inequal- 

ities for algebraic and trigonometric polynomials can be found in [5] and [6]. In 

[2] we proved Conjecture 5.1 in the case when A i > A i, j = 1 ,2 , . . .  with some 

A > 1, and obtained Theorem 4.2 as a consequence of it. Our proof of Theorem 

4.2 in Section 6 will be essentially shorter and it may open other ways to attack 

Conjecture 4.1. 

There was another motivation to establish Conjecture 5.1. It would solve 

Newman's problem [10, P(10.5), p. 50] concerning the density of the classes 

H'(A)={p=~pj:j=l pj6H(A),j=l,2,...,k} 
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in C([0,11) in the uniform norm, when ,~j = j2, j __ 1, 2, . . . .  Namely, if Conjec- 

ture 5.1 were true, then Hk(A) would fail to be dense in C([0,1]) in the uniform 
co --1 norm for every k E N, whenever ~i=l)h < oo. Indeed, Conjecture 5.1 implies 

that 

(5.1) m({x ~ [0,11 : Iq(x)[ ~ ~-~[q(0)l}) _~ 1 - ( 2 k )  -1 

for every q E H(A) with a = c((2k) -1, A) + 1. Hence 

1 
(5.2) m({x e [0,1] : P(z)l > a-klp(0)l)) > 

for every p E Ht(A)  ( i fp  = plp2""pk with pj E H(A), j = 1 , 2 , . . . , k ,  then 

Ip(z)l > a-~lp(0)l holds for every z E [0,1] satisfying Ipi(x)l > a-llpj(0)l for 

each j = 1 ,2 , . . . ,  k). Now let f E C([0,1]) be such that f ( z )  = 0 if 1/4 < x < 1, 

a n d / ( 0 )  = 1. If there were a p E Hk(A) such that 

(5.3) 0<x<lmax Ip (x) -  f(z) l  <_ 2~1 -k, 

then it would contradict (5.2). Similarly, Conjecture 5.1 would imply that if 

~i=l,k i o o  -1 < oo, and A C [0,1] is of positive measure, then Hk(A) is not dense in 

C(A) for every k E N. 

6. P roo f s  

To prove Theorem 2.2 we need the following result of Hardy and Littlewood [8]. 

THEOREM A: Assume that 70 ---- 0, 7i+1/7i -> ~7 > 1 t'or every i = 1 ,2 , . . . ,  

f ( x )  = ~,~obix ~' is convergent in [0,1) and limx--.x-f(x) = A exists. Then 

A = ~i=ob,. 

Proof of Theorem 2.2: Without loss of generality we may assume that  ),0 = 0. 

Assume indirectly that there are 

nk 

(6.1) Pk( ) = 
j = 0  

such that 

(6.2) max IPk(x)I = I, k = 1 , 2 . . .  
O < z < l  
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and 

(6.3) 
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max [bi,, ,kl>k 4, k = 1 , 2 ,  . . . .  
o<i<-k 

Choose a sequence {ak} k°°_- 1 of positive integers such that 

(6.4) a l  = 1 and ak+l _> 2akA,k for k = 1,2, . . . .  

Now let 

(6.5) 
o o  

k----I 

Isr. J .  Ma th .  

(6.6) 

Further let 

(6.7) 

N 0 = 0  and N~,=Eni ,  k = l , 2 ,  . . . .  
i----1 

and 

'~'0 ~ 0 ,  

o o  

k = l  

(6.8) "/N~_~+i=akAj, j = l , 2 , . . . , n k  and k = l , 2 , . . .  

Observe that the sum in (6.7) converges, since by (6.2) Ib0,,,l = IP*(O)l _< 1. 

Also, from Ai+l/Ai >_ c2(h) > 1, i = 1 ,2 , . . . ,  and (6.4) we can deduce that 
o o  7i+l/'ri >_ )7 > 1, i = 1 ,2 , . . .  with )7 = min{c2(A),2}. Let A' = {7i}i=1. Then by 

(6.5) f E C([0,1]) can be approximated by Miintz polynomials from H(A') with 

arbitrary accuracy. Hence by Theorem 3 of [4] f is of the form 

o o  

(6.9) f ( = )  = 
i=0 

where the sum converges in [0,1). 

implies that  

(6.10) = A 
i=0 

Since f is continuous on [0,1], Theorem A 

Note that  the above sum converges uniformly on [0, 1] because of (6.2). Therefore 

f is continuous on [0,1]. For the sake of brevity let 
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exists. By Theo rem 3 of [4] each b./,,, ( j  = 1 , 2 , . . . , n h ;  k = 1 , 2 , . . . )  is equal 

to one of the coefficients bi (i -- 1 , 2 , . . . ) .  Since Ib0,n,I = IPk(0)l _< 1 for every 

k = 1, 2 , . . . ,  f rom (6.3) and (6.5) we deduce tha t  for every k E N there  is an i E N 

such tha t  ]bil _> k 2. This  contradicts  (6.10), thus the theorem is proved.  | 

Proofo[  Theorem 2.1: We show tha t  if liminfi--.oo Ai/~i-1 -- 1, then  there  is no 

cl(A) such tha t  la./,nl _< cl(A) for every j = 0 , 1 , . . . , n ;  n = 0,1,  . . . .  To  see this, 

for  an  a rb i t ra ry  6 > 0 we select an n E N such tha t  An--1/~n > 1 -- e. Observe 

tha t  Pn (z )  -- z x" - z x"-* achieves its max imum modulus  on [0, 1] at 

:~= ( ~ )  ~/(x.-~,,,_l) 

hence 
• X~-- 1 

max IP-(~)I < 1 < I - - -  < ~, 
o<~<1 - An ] -  An 

which shows that the leading coemcient of the n-th Chehyshev polynomial T. of 
n (A)  on [0,1] is at least I/e,  otherwise 

1 
T,, - P,, E H . - I ( A )  

a n o n  

would have at  least n zeros in (0, 1), a contradict ion.  | 

P r o o f  o[  Theorem 3.1: Let p = H(A)  be of the form 

n 

(6.11)) p(z) = bo,n + E bJ'n::'~ 
.i=1 

such tha t  

(6.12) max Ip(')l < 1. 
o_<z~l 

From ~i+l /Ai  _> c2(A) > 1 (i = 1 , 2 , . . . ) ,  A1 _> 1, Theorem 2.2 and (6.12), we 

obta in  
n 

If(y)[ = [ ' ~  bi,.AiY ~ - z l  < ~ [b~,,,i'~Y ~j - z  

(6.13) j=l  j=l  
n oo  c3(A) 

< el(A) ~ , ~ j v  ~'-1 _< c3(A) ~-'~ vi = 
j=1 j=o 1 - y ' 

which yields the  theorem. | 

To prove Theorem 4.1 we need two lemmas. 
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LEMMA 6 . 1 : I r A 0  = 0 and Ai+l/Ai _> e2(A) > 1 for every i = 1 ,2 , . . . ,  then for 

everyO < y < 1 there is an integer k(y,A) > 0 depending only on y and A such 

that the n-th Chebychev polynomial T ,  of H(A) on [0,1] has at most k(y, A) 

zeros in [0,y] (n = 1 ,2 , . . . ) .  

The proof of Lemma 6.1 can be found in [1, Theorem 3]. 

LEMMA 6.2: Let A0 = O, A1 > 1 and Ai+l/Ai >_ c2(A) > 1 for everyi = 1,2, . . . .  

Denote the extreme points of the n-th Chebyshev polynomial T.  of  H(A) on [0, 1] 

by 1 = yo,. > yl, .  > ...  > Y,,,. = O. Then there is a constant e = e4(A) > 0 

depending only on A such that 

1 
T . ( x ) > - ~  if y j , . < x < y j , n + c ( 1 - y j , n ) ,  l < j < n ,  j i s e v e n  (6.14) 

and 

1 
(6.15) T n ( x ) < _ - ~  if  y j , , ,<_x<_yj , ,+c(1-y£n) ,  l<_j<_n,  j l s o d d .  

P r o o f o f L e m m a  6.2: The proof is a straightforward combination of the equioseil- 

lation of the Chebyshev polynomials Tn, the Mean Value Theorem and Theorem 

3.1. | 

Proof  of  Theorem 4.2: Without loss of generality we may assume that  A1 _> I; 

the case Jkl > 0 can be obtained from this by the scaling z - -*  x l / ~ t  . Denote the 

Lebesgue outer measure of a set A C [0,1] by re(A). If re(A) > 0 and A C [0, 1], 

then by the Lebesgue Density Theorem there is an 0 < a E A such that the 

left hand side density of A at a is 1. By the scaling x --~ z/a,  without loss of 

generality we may assume that a = 1, that is 

lim m ( ( 1 -  x,1) NA) = 1. 
(6.16) ~--,o+ z 

Hence, there is a 0 < y < 1 such that 

(6.17) m((1 - x) N A) > max{1 - c/2, 3/4} for every 0 < z _< y, 
x 

where e = ¢4(A) > 0 is the same as in Lemma 6.2. By Lemma 6.1 there is an 

integer k = k(y/2, A) > 0 such that for the extreme points 1 = Y0,n > Yl,, > 

• "" > Yn,, = 0 of the n-th Chebyshev polynomial Tn of H(A) on [0, 1] we have 

(6.18) y j , , , > l - y / 2  if 0 _ < j _ < n - k .  
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Since m((1 - y, 1 - y/2) N A) > 0 (see (6.17)), there are k + 3 distinct points 

al < a2 < . . .  < ak+3 in (1 - y, 1 - y/2) N A. Now let g be a continuous function 

on [0,1] (and hence on A) such that  

(6.19) 

and 

(6.20) 

g(z)=O if 1 - y / 2 < x < l  

g(aj) = 2 ( - 1 )  i for every j = 1, 2 , . . . ,  k -4- 3. 

Assume that  there is a p E H(A) such that  

(6.21) fp(=) - 9(=)1 < ¼. 

We will show that  p - T,, E H , ( A )  has at least n + 1 different zeros in (0,1), a 

contradiction. Indeed, it follows from Lemma 6.2 and (6.17) that  there are n - k 

distinct points zl,n > z2,, > - . .  > zn-k,,, from A such that  

T(z£,)>_½ if l _ < j _ < n - k a n d j i s e v e n  (6.22) 

and 

(6.23) T ( z £ , ) < - ]  if l < j _ < n - k a n d j i s o d d .  

Now (6.19) - (6.23) and max0<r<l IT,(x)[ = 1 imply 

(6.24) (p-Tn)(zj,n)<O if l < j < n - k a n d j i s e v e n ,  

(6.25) (p-T , ) ( z£ , )>O if l < j < n - k a n d j i s o d d ,  

(6.26) (p-T,,)(ai)<O if l _ < j < k + 3 a n d j i s o d d ,  

and 

(6.27) (p - T,,)(zj,,) > 0 if 1 _< j < k + 3 and j is even. 

From (6.24) - (6.27) we can deduce that  p - T,, has at least k -I- 2 zeros in 

(al,ak+3) C (1 - y ,  1 -  y/2). Thus p - T , ,  E H ,  has at least n-4-1 different zeros 

in (0, 1), but  p ~ T, ,  since max0_<,_<1 ]p(x)] > 7/4 and max0<z<l ]Tn(x)] = 1. 

This is a contradiction which finishes the proof. II 
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